Tuning parameter selection for a penalized estimator of species richness

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tuning parameter selection in high dimensional penalized likelihood

Determining how to select the tuning parameter appropriately is essential in penalized likelihood methods for high dimensional data analysis. We examine this problem in the setting of penalized likelihood methods for generalized linear models, where the dimensionality of covariates p is allowed to increase exponentially with the sample size n. We propose to select the tuning parameter by optimi...

متن کامل

Tuning Parameter Selection for Penalized Likelihood Estimation of Inverse Covariance Matrix

In a Gaussian graphical model, the conditional independence between two variables are characterized by the corresponding zero entries in the inverse covariance matrix. Maximum likelihood method using the smoothly clipped absolute deviation (SCAD) penalty (Fan and Li, 2001) and the adaptive LASSO penalty (Zou, 2006) have been proposed in literature. In this article, we establish the result that ...

متن کامل

A Penalized Nonparametric Maximum Likelihood Approach to Species Richness Estimation

We propose a class of penalized nonparametric maximum likelihood estimators (NPMLEs) for the species richness problem. We use a penalty term on the likelihood because likelihood estimators that lack it have an extreme instability problem. The estimators are constructed using a conditional likelihood that is simpler than the full likelihood. We show that the full-likelihood NPMLE solution given ...

متن کامل

A Consistent Estimator for Uniform Parameter Under Interval Censoring

‎The censored data are widely used in statistical tests and parameters estimation‎. ‎In some cases e.g‎. ‎medical accidents which data are not recorded at the time of occurrence‎, ‎some methods such as interval censoring are used‎. ‎In this paper‎, ‎for a random sample uniformly distributed on the interval (0,θ) ‎the interval censoring have been used‎. ‎A consistent estimator of θ  and some asy...

متن کامل

Smoothing parameter selection in two frameworks for penalized splines

There are two popular smoothing parameter selection methods for spline smoothing. First, smoothing parameters can be estimated minimizing criteria that approximate the average mean squared error of the regression function estimator. Second, the maximum likelihood paradigm can be employed, under the assumption that the regression function is a realization of some stochastic process. In this arti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Statistics

سال: 2020

ISSN: 0266-4763,1360-0532

DOI: 10.1080/02664763.2020.1754359